
Journal ofStatistical Physics, Vol. 8, No. 3 1973 
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A slight modification of the recent Penrose and Lebowitz treatment of thermo- 
dynamic metastable states is presented. For the case of periodic boundary 
conditions, this modification allows the condition of metastability to be 
extended to all the metastable states in the van der Waals-Maxwell theory 
of the liquid-vapor phase transition, that is, for all states satisfying 

;;(p) + �89 > f(p, 0+) 
and 

./;"(p) + ~ > x > 0 

where f(p, 0 + )  is the (stable) Helmholtz free energy density of the generalized 
van der Waals-Maxwell theory and f0(P) is the Helmholtz free energy density 
of a reference system with no long-range interaction. ~ is a "mean field"- 
type term arising from a long-range Kac interaction, p is the overall mean 
particle density, and x is any positive number. For the case of rigid-wall 
boundary conditions, a more restrictive condition is placed on x. 

KEY WORDS: Classical fluids; thermodynamic metastability; statistical 
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v-dimensional cube f2, with a pair  potential of  the form q(r) -t- ~,~d?(~,r), 
where q(r) is a short-range interaction and ~,"q~(~,r) is a long-range Kac  
interaction. The term ~ represents an inverse range parameter.  The domain  X2 
is divided into M cells each with volume ] co ]. A restricted region R of  phase 
space is defined by requiring that  the number  of  particles n~ in the k th  cell 
satisfy the relation 

p - l o J l < n ~ < p + l o o l ,  k = 1, 2,..., M (1) 

where p -  and p+ are to be specified. This restricted region of  phase space is 
said to correspond to a metastable state in the following sense: I f  the maxi- 
m u m  rate A of  phase points leaving R, given an ensemble o f  systems initially 
(t = 0) confined to R, can be made arbitrarily small, then we say that  the 
region R corresponds to a thermodynamic  metastable state. 

Penrose and Lebowitz  derive the rigorous upper  bound  on A given by 
expression 3 [PL(30)] 

A ~ M(kT/2zrm) 1/2 2v I co IZ-a/") pmax{Maxi prob(ni = n + or  n-)} (2) 

This bound  is obtained f rom a kinetic theory argument  where k is Bol tzmann 's  
constant ,  T is the absolute temperature,  and m is the mass of  a particle. 
pmax is an upper  bound  on the density and {Max/prob(ni  ---- n + or  n-)} is 
the max imum over i (i = 1, 2 , . ,  M)  o f  the probabil i ty tha t  the ith cell 
initially (t = 0) have either n + or n -  particles. 4 For  a restricted por t ion o f  the 
metastable states in the van der Waals -Maxwel l  theory [see PL  (10), (81), 
and (82)], Penrose and Lebowitz show that  A -+ 0 under  the limit 

(3) 

where ro is a length characterizing the potential q(r). We note that  the crucial  
proper ty  to show s is 

{Max/prob(ni  = n + or n-)} ~< exp{-- ] co [[C + o(1)]} (4) 

where C is a positive number.  I f  (4) is satisfied, then ~t --+ 0 under  the limit 
given by (3). 

Below, we show that  for  the case o f  periodic boundary  conditions, a 
slight modificat ion o f  the Penrose-Lebowitz  procedure yields A ~ 0 for  all 

Equations referring to Ref. 1 will be denoted by [PL ( )]. 
4 n + and n- are integral solutions of [PL (31)], n + < p+ I co ] < n + 4- 1 and n- > p- I co I ~> 

n - - - 1 .  
The order symbol means: ff x = o(1), then lira x = 0. 
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the metastable states in the van der Waals-MaxweU theory; that is, for all 
states satisfying 

fo(p) + �89 > f(p, 0 + )  (Sa) 

and 

fo'(p) + ,~ >~ x > 0 (5b) 

where f(p, 0 + )  is the Helmholtz free energy density acted on by the limiting 
process (3) which is given by a,2) 

f(p, 0-5) = C.E.{fo(p) + �89 (6) 

The term C.E.{ } is the convex envelope of the function in the bracket. 
f0(P) is the Helmholtz free energy density (evaluated in the thermodynamic 
limit) for a reference system with short-range interactions but no long-range 
interactions, f0' denotes the second derivative of f0 and is assumed to be 
continuous. The term ~ (~ < 0) is a "mean field"-type term arising from the 
long-range Kac interaction and x is any positive number. For the case of 
rigid-wall boundary conditions, a more restrictive condition is placed on x. 

We establish a bound on the probability p~(n +) that the ith cell has n + 
particles given an ensemble of systems confined to R. A similar argument leads 
to bounds on pi(n-). A bound for pi(n +) is given by [PL (49)], which should 
read G 

pi(n +) <~ expl [/z(n+ - - / i )  -- Fo(n +, co) q- Fo(~, co') 

where w(kis) is a "characteristic" long-range Kac interaction between cells i 
and j ,  

Fo(n, co) -~ co [[fo(n/l co l) + o(1)1 (8) 

and /7 is any integer such that n -  < ~ < n +. The choice of ~ is specified 
below. Inequality (7) can now be written as 

pi(n +) ~ exp l[I co IIkT][l~(p + - -~) - - fo (p  +) -t- fo(P) 

- - ( p + -  f i ) ~  nsw(ki,)-t-o(1)l t (9a) 
-7- .I) 

where 7 

fi = g/]co ] (9b) 

Note that there is a misprint in [PL (49)]. The n- terms should be ~. 
7 Note that at this point we do not place any conditions on ~ other than requiring p- < 

tS<p +. 
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Using [PL (9)], which relates the chemical potential/z to the overall mean 
density p(p -  < p < p+) by 

= f0'(P) + ~p (10) 

in (9a) we obtain 

I -- ( p + -  #)1 r [f0(~+)- fo(~) p d n  +) e x p  
k T  t t .  - - f i  

q- ~ n4w(k,j)-  ~p . o(1)] I (11) 
J 

We now assume that 
w(k,j) ~< 0 (12) 

for all i and j. Since all nj must be less 4 than p+ [ co ], we obtain [PL (54)] 

Z njw(kij) ~ n + ~, w(kij) -= p~[~ q- o(1)] (13) 
J J 

This inequality is valid independent of the system being described by periodic 
or rigid-wall boundary conditions [see PL(54) and (80)]. Inequality (11) can 
now be written as 

! _  (p+ - fi)l ~ ! 
p,(n  +) e x p  

k T  

+ + 
J)  

[ f0(P~ -_~f0@ _ fo'(P) 

(14) 

We observe that a(p + -- p) is negative and independent of the choice of ft. 
However, since fo(P) is a convex function, 13) 

A - -  f~ - -  f~ fo'(P) (15) 
p+ - -  /5 

is positive provided p < /5 < p+. In fact, A must increase as /5 becomes 
closer to p+. By the mean value theorem, (15) can be written as 

A = fo'(Pl)  - -  fo'(P) (16) 

where pz is contained in [/5, p+]. Again using the mean value theorem, we 
obtain 

A = fo'(P2)(Pl - -  P) (17) 

where  P2 is contained in [p, Pz]- We now assume (5b) is satisfied for all values 
of the argument in the interval [p-, p+]. Equation (17) can then be bounded 
below by 

A >~ ( x - -  ~)(pz -- p) ~ (x -- ~)(fi -- p) (18) 

provided p < fi < p+. 
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Using (15) and (18) in (14), we find 

p~(n +) ~ exp{--[(p  + - -  fi)[ co i /kTl[x(15 - -  p) + e~(p-.- - -  15) + o(1)]} (19) 

We desire an upper  bound  on p~(n +) which is o f  the fo rm given in (4), i.e., 

p~(n +) ~< exp{--  [ co I[C § o(1)]} (20) 

where C is a positive number .  This can always be accomplished by using (19) 
and defining 

c = [ (o+  - 1 5 ) / k r ] [ x ( 1 5  - p)  + ~(e~- - -  15)] 

provided we choose t5 such that  

( x p  - -  o~p+)/(x - -  o 0 < 15 < p+ (21) 

Any  15 so chosen s yields a bound  on p i (n  +) as given by (20). 
Fo r  the case of  periodic bounda ry  conditions, a similar analysis for  

p i ( n - )  yields the desired bound  provided tha t  for  this case 15' is chosen such 
that  

O- < P' < ( x p  - -  cxp- ) / (x  - -  ~) (22) 

which is always satisfied for  any x > 0. Fo r  the case of  rigid-wall boundary  
condit ions,  the analysis 9 for  p~(n-) yields the desired bound  provided fi' is 
chosen such that  

p -  < 15' < ( p x  - -  p-o~') / (x  - -  ~) (23) 

where ~' is given by [PL (80)] 

c~' = limit o f  Mini [ co F ~ w(k~j)  = 2 ~c~ (24) 
J 

Unlike (22), (23) is not  satisfied for  any x > 0. There are, however,  two 
possible ways of  using (23). One way is to choose p -  = 0. Then, (23) reduces 
to 

0 < ~' < p x / ( x  - -  ~) (25a) 

which is valid for  any x > 0. However ,  since we have required (5b) to be 
satisfied in the interval [p-, p+], the choice of  p -  = 0 must  be coupled with 
the condit ion 

f d ' (Y )  -~ O~ > O, y e [0, p+] (25b) 

Note that p < (xp -- =p+)/(x -- ~) < p+ for any x > 0. 
9 For this case the inequality corresponding to (13) is 52j n~w(k~i) ~< n- 5"j w(k~;) ~< p-~'. 
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The other way of using (23) is to choose 

x > [e - / (p  - p - ) ] [ - ~  + ~'1 (26) 

Expression (23) can be satisfied for any x consistent with (26). 
The main departure from the Penrose and Lebowitz work is in choosing 

the appropriate t5 as specified by (21)-(23), instead of choosing 15-----p. 
Simply stated, the choice of t5 as presented here allows the replacement of  
2o~ by c~ in [PL (10), (81), and (82)]. 

R E F E R E N C E S  

1. O. Penrose and J. L. Lebowitz, J. Stat. Phys. 3:211 (1971). 
2. J. L. Lebowitz and O. Penrose, Y. Math. Phys. 7:98 (1966). 
3. M. E. Fisher, Arch. Rat. Mech. AnaL 17:377 (1964). 


