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Metastahle States
in the van der Waals-Maxwell Theory
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A slight modification of the recent Penrose and Lebowitz treatment of thermo-
dynamic metastable states is presented. For the case of periodic boundary
conditions, this modification allows the condition of metastability to be
extended to all the metastable states in the van der Waals—Maxwell theory
of the liquid—vapor phase transition, that is, for all states satisfying

S} + Fap? > flp, 04)
and

f'@) +a= x>0

where f (p, 0+) is the (stable) Helmholtz free energy density of the generalized
van der Waals—Maxwell theory and fy(p) is the Helmholtz free energy density
of a reference system with no long-range interaction. « is a “mean field”-
type term arising from a long-range Kac interaction, p is the overall mean
particle density, and x is any positive number. For the case of rigid-wall
boundary conditions, a more restrictive condition is placed on x.

KEY WORDS: Classical fluids; thermodynamic metastability; statistical
mechanics.

A recent article by Penrose and LebowitzY presents a rigorous treatment of
the metastable states in the van der Waals-Maxwell theory of the liquid-
vapor phase transition. They consider a classical system contained in a
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v-dimensional cube £, with a pair potential of the form g(r) + y*¢(yr),
where g(r) is a short-range interaction and y*¢(yr) is a long-range Kac
interaction. The term vy represents an inverse range parameter. The domain £2
is divided into M cells each with volume | w |. A restricted region R of phase
space is defined by requiring that the number of particles n;, in the kth cell
satisfy the relation

ple|l <n <ptlol, k=12,..M ¢))

where p~ and p* are to be specified. This restricted region of phase space is
said to correspond to a metastable state in the following sense: If the maxi-
mum rate A of phase points leaving R, given an ensemble of systems initially
(t = 0) confined to R, can be made arbitrarily small, then we say that the
region R corresponds to a thermodynamic metastable state.

Penrose and Lebowitz derive the rigorous upper bound on A given by
expression® [PL(30)]

A << MET2am) 2 2v | w 2O prax{Max; prob(n; = nt or n)}  (2)

This bound is obtained from a kinetic theory argument where & is Boltzmann’s
constant, T is the absolute temperature, and m is the mass of a particle.
pmax 18 an upper bound on the density and {Max, prob(n; = n* or n7)} is
the maximum over i (i = 1, 2,..., M) of the probability that the ith cell
initially ( = 0) have either #* or n~ particles.* For a restricted portion of the
metastable states in the van der Waals—Maxwell theory [see PL (10), (81),
and (82)], Penrose and Lebowitz show that A — 0 under the limit

12>y >lw|>rn]2] 3

where r, is a length characterizing the potential ¢(r). We note that the crucial
property to show?® is

{Max; prob(n; = n* or n7)} < exp{— | w [[C + o(D)]} 4

where C is a positive number. If (4) is satisfied, then A — 0 under the limit
given by (3).

Below, we show that for the case of periodic boundary conditions, a
slight modification of the Penrose-Lebowitz procedure yields A — 0 for all

3 Equations referring to Ref. 1 will be denoted by [PL ()].

4 p+ and n~ are integral solutions of [PL 3], n* <ptlwi<nt +1landn > p 0| >
n — 1.

5 The order symbol means: If x = o(1), then lim x = 0.
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the metastable states in the van der Waals—Maxwell theory; that is, for all
states satisfying

Solp) + ep® > flp, 0+) (52)

and
gp) +az=x>0 (5b)

where f(p, 0-) is the Helmholtz free energy density acted on by the limiting
process (3) which is given by®-?

flp, 0+) = C.E{fi(p) + op%. (6)

The term C.E.{ } is the convex envelope of the function in the bracket.
Jo(p) is the Helmholtz free energy density (evaluated in the thermodynamic
limit) for a reference system with short-range interactions but no long-range
interactions. f; denotes the second derivative of f, and is assumed to be
continuous, The term « (o« << 0) is a “mean field’-type term arising from the
long-range Kac interaction and x is any positive number. For the case of
rigid-wall boundary conditions, a more restrictive condition is placed on x.

We establish a bound on the probability p,(n*) that the ith cell has #*
particles given an ensemble of systems confined to R. A similar argument leads

to bounds on p,(n~). A bound for p,(n*) is given by [PL (49)], which should
read®

pilr) < exp| [l — ) — Fyn, @) + Filf, )
— (= — ) ¥, nwlks) + ol w D] k7] )
i
where w(k,,) is a ““characteristic’’ long-range Kac interaction between cells i
and j,
Fy(n, w) = o |[fo(nf} & ) + o(1)] (8)

and 7 is any integer such that n~ <C# << n*. The choice of 7 is specified
below. Inequality (7) can now be written as

Py < exp |[| @ KT | [t — D) — filp?) + /5)
— (p* — 1) L nwlks) + oD 92)

where?

p=nllw] (9b)

¢ Note that there is a misprint in [PL (49)]. The #~ terms should be 7.

” Note that at this point we do not place any conditions on 5 other than requiring p~ <
B <p™
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Using [PL (9)], which relates the chemical potential p to the overall mean
density p(p~ << p < p*) by
w=fy(p) + ap (10)

in (9a) we obtain

pdnt) < exp %— (p* —k;Z)l @l [ﬂ,(p;z :Q(ﬁ) —fo'(p)

+ Z mw(ky) — ap + O(I)M (11)

We now assume that
wk;) <0 (12)

for all i and j. Since all n; must be less? than p* | w |, we obtain [PL (54)]
Y, mw(ky) = nt Y, wiky) = prfa 4 o(1)] (13)
] i

This inequality is valid independent of the system being described by periodic
or rigid-wall boundary conditions [see PL(54) and (80)]. Inequality (11) can
now be written as

pin) < exp 3* (p~ —kg)f w | [fo(P;) fo(P) — £p)

+ alpt — p) + o(1)]| (14)

We observe that ofp*t — p) is negative and independent of the choice of p.
However, since fy(p) is a convex function,®

pt—p '
is positive provided p < p < pt. In fact, 4 must increase as p becomes
closer to p*. By the mean value theorem, (15) can be written as

4 = f3'(p)) — fo'(P) (16)

where p, is contained in [p, p*]. Again using the mean value theorem, we
obtain

= f(p2)(p1 — p) W)

where p, is contained in [p, p;]. We now assume (5b) is satisfied for all values
of the argument in the interval [p~, p*]. Equation (17) can then be bounded
below by

4= x—a)pr—p) =& — ) —p) (18)
provided p << p < pt.
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Using (15) and (18) in (14), we find
pin%) < exp{—[(p™ — p)| w [[kTHx(p — p) + alp™ — p) + oD} (19)
We desire an upper bound on p,(n*) which is of the form given in (4), i.c.,
pnt) < exp{— | w [[C 1+ o(D]} (20)

where C is a positive number. This can always be accomplished by using (19)
and defining

C = [lp* — p)ETIx(p — p) + p™ — )]
provided we choose p such that
(rp — ap)f(x — o) < p < p* @n

Any p so chosen® yields a bound on p,(nt) as given by (20).

For the case of periodic boundary conditions, a similar analysis for
pi(n~) yields the desired bound provided that for this case ' is chosen such
that

pm < B < (op— ap)(x — ) 22)
which is always satisfied for any x > 0. For the case of rigid-wall boundary

conditions, the analysis® for p,(n~) yields the desired bound provided g’ is
chosen such that

pm < p <(px —pa)x — a) (23)
where o is given by [PL (80)]
af = limit of Min; | w | ) w(ky;) = 27« (24)
i

Unlike (22), (23) is not satisfied for any x > 0. There are, however, two
possible ways of using (23). One way is to choose p~ = 0. Then, (23) reduces
to

0 < p < pxf(x — o) (25a)

which is valid for any x > 0. However, since we have required (5b) to be
satisfied in the interval [p—, p*], the choice of p~ = 0 must be coupled with
the condition

fi() +a>0, yel0,p] (25b)

8 Note that p < (xp — apt)/(x — @) < p* for any x > 0.
? For this case the inequality corresponding to (13) is &; mw(k;) < n~ X, wik,;) < o
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The other way of using (23) is to choose

x> p/lp— p)ll—a + o] (26)

Expression (23) can be satisfied for any x consistent with (26).

The main departure from the Penrose and Lebowitz work is in choosing
the appropriate p as specified by (21)-(23), instead of choosing p = p.
Simply stated, the choice of p as presented here allows the replacement of
2« by « in [PL (10), (81), and (82)].
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